BEM VINDO




16 de set de 2010

Pensar matemático

Pensar matemático

Beatriz Vichessi


Mesmo após 25 anos da publicação da primeira edição de A Criança e o Número (128 págs., Ed. Papirus, tel. 19/3272-4500, 30,90 reais), algumas questões levantadas pela autora, Constance Kamii, permanecem atuais e devem ser estudadas pelos educadores que trabalham com a Educação Infantil.

O livro aborda os processos envolvidos na construção do conceito de número pelas crianças e ajuda o professor a observar como elas pensam a fim de entender a lógica existente nos erros.

Conteúdo relacionado.

Tudo sobre

Com propriedade, Constance defende que, diferentemete do que algumas interpretações indicam, desenvolver e exercitar os aspectos lógicos do número com atividades pré-numéricas (seriação, classificação e correspondência termo a termo) é uma aplicação equivocada da pesquisa de Jean Piaget (1896-1980). Na realidade, o cientista suíço tinha preocupações epistemológicas e não didáticas. Sabe-se que as noções numéricas são desenvolvidas com base nos intercâmbios dos pequenos com o ambiente e, portanto, não dependem da autorização dos adultos para que ocorram. Ninguém espera chegar aos 6 anos para começar a perguntar sobre os números...

O texto enfatiza que uma criança ativa e curiosa não aprende Matemática memorizando, repetindo e exercitando, mas resolvendo situações-problema, enfrentando obstáculos cognitivos e utilizando os conhecimentos que sejam frutos de sua inserção familiar e social. Ao mesmo tempo, os avanços conquistados pela didática da Matemática nos permitem afi rmar que é com o uso do número, da análise e da refl exão sobre o sistema de numeração que os pequenos constroem conhecimentos a esse respeito.

Também merecem destaque algumas posturas que o professor deve levar em conta ao propor atividades numéricas, como encorajar as crianças a colocar objetos em relação, pensar sobre os números e interagir com seus colegas.

Priscila Monteiro, selecionadora do Prêmio Victor Civita Educador Nota 10

Trecho do livro

"Quando ensinamos número e aritmética como se nós, adultos, fôssemos a única fonte válida de retroalimentação, sem querer ensinamos também que a verdade só pode sair de nós. Então a criança aprende a ler no rosto do professor sinais de aprovação ou desaprovação. Tal instrução reforça a heteronomia da criança e resulta numa aprendizagem que se conforma com a autoridade do adulto. Não é dessa forma que as crianças desenvolverão o conhecimento do número, a autonomia, ou a confiança em sua habilidade matemática. (...) Embora a fonte defi nitiva de retroalimentação esteja dentro da criança, o desacordo com outras crianças pode estimulá-la a reexaminar suas próprias idéias. Quando a criança discute que 2 + 4 = 5, por exemplo, ela tem a oportunidade de pensar sobre a correção de seu próprio pensamento se quiser convencer a alguém mais. É por isso que a confrontação social entre colegas é indispensável (...)"
Por que ler?

  • Aborda de forma acessível alguns aspectos fundamentais do trabalho de Piaget publicados no livro A Gênese do Número na Criança.

  • Apresenta informações fornecidas pela Psicologia genética e pelas pesquisas psicogenéticas sobre os processos de aprendizagem e as idéias que as crianças constroem.

  • Elucida as implicações da teoria piagetiana na prática de sala de aula e como as diferentes formas de conhecimento estabelecidas por Piaget interagem na aprendizagem da Matemática.

A autora foi aluna e colaboradora de Piaget e pioneira ao propor o ensino da Matemática com o aluno como sujeito do processo.



Fonte:
http://revistaescola.abril.com.br/matematica/fundamentos/pensar-matematico-428559.shtml

Nenhum comentário:

Postar um comentário